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Abstract. The one-graviton transition operator and, consequently, the classical energy-loss 
formula for gravitational radiation are derived from the Feynman graphs of helicity *2 
theories of gravitation. The calculations are done both for the case of electromagnetic and 
gravitational scattering. The departure of the in and out states from plane waves owing to 
the long-range nature of gravitation is taken into account to improve the Born approxima- 
tion calculations. This also includes a long-range modification of the graviton wavefunction 
which is shown to be equivalent to the classical problem of the true light cones deviating 
logarithmically at large distances from the flat space light cones. The transition from the 
S-matrix elements calculated graphically to the graviton transition operator is done by using 
complementarity of space-time and momentum descriptions. The energy-loss formula 
derived originally by Einstein is shown to be correct. 

1. Introduction 

The problem of gravitational radiation has had a controversial history right from the 
early days of general relativity. The magnitude of the controversy may be visualised by 
the fact that even its existence was intensely debated by Einstein and Robertson for a 
long time. In his 1918 article Einstein derived the following formula for the power 
emitted by gravitational radiation 

where G is the Newtonian constant, eii(h, 2) is the polarisation tensor for the mode A 
propagating along 2 in the gauge &Oi = eo' = 0 and D" is the quadrupole moment for the 
material system. 

Nearly half a century later this result has been criticised by a number of authors 
(Ehlers et a1 1976) on the grounds of self-consistency. The derivation mentioned above 
was essentially based on reducing Einstein's equations to the quasi-linear form 

0,g = n m ,  g) + A(&?) (1.2) 

C(g> = 0. (1.3) 

after fixing the coordinate choice according to some conditions 

In (1 2) 0, is the Laplacian defined on space-time with metric g, T(m, g) is a functional 
of the metric as well as the matter variables m, and A(g) is a functional of g only. In 
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general it is very difficult, if not impossible, to solve (1.2). The strategy one adopts 
usually consists in solving (1.2) iteratively. This is done by computing a sequence 
g, g, . . . , g (where each member is a functional of the matter fields m) and then 

imposing the conditions (1.3). Equation (1.3) for “g  is then equivalent to the (N  - 1)th- 
order equations of motion for the matter variables, i.e. 

N-lV T ( m ,  N - l g )  = 0 - C ( N g )  = 0. (1.4) 

Since the field equations and equations of motion for matter are not independent in 

Einstein derived (1.1) by linearising the field equations. Up to this approximation, 

(1 3 

For a system of point particles not acted upon by any non-gravitational forces like 
electromagnetism, etc, (1.5) implied du@/dT = 0 and consequently b“ = 0. Thus the 
radiation intensity in the linearised approximation vanishes when the particles are not 
acted upon by any non-gravitational forces! In electrodynamics such a difficulty does 
not arise because the current is conserved for all equations of motion of the charged 
particle. 

If the particles are acted upon by non-gravitational forces *T(m,  Og) is not merely 
the stress tensor of the particles and (1.5) does not imply duc”/dT = 0 (for example 
du’/dT = eFe””wv for electromagnetism) and hence bij # 0 and (1.1) is consistently 
derivable in the linear approximation. 

Despite the impression created by Einstein (1918) that (1.1) was derived in the 
linear approximation it is not clear that it is really so as in evaluating the radiation 
potentials Einstein implicitly uses not (1.5) but 

1 2  N 

general relativity, the above procedure is necessary for self-consistency. 

the equation of motion for matter must be 

v * T ( m ,  Og) = 0. 0 

‘v * T(m,  l g )  = 0 (1.6) 

which indeed ensures non-vanishing 6,. But according to (1.4) g must be computed to 
at least *g which is clearly beyond the linear approximation. The question is then raised 
as to whether all effects have been consistently included to the desired approximation. 

Ehlers et al (1976) have urged a closer inspection of (1.1) in view of the above 
difficulties. They have also listed a number of pitfalls to be carefully avoided for a 
satisfactory derivation of (1.1). Further, the 1918 derivation and many subsequent 
derivations based on it (Weinberg 1972) use the ‘pseudo-tensor’ to relate the outgoing 
flux to the radiation potentials. It is therefore desirable to find methods that do not 
make explicit use of the pseudo-tensor. 

Recently Rosenblum (1 978) has calculated the energy loss during gravitational 
scattering of two point particles of equal mass in the fast approximation scheme. He 
concludes that (1.1) is wrong by a factor of nearly 2.5! Rosenblum deals directly with 
the equations of motion as opposed to calculating the energy loss at infinity. 

Cooperstock and Hobill (1979) have initiated a series of investigations into the 
radiation problem wherein they make a model for the radiating system which consists of 
two masses held initially by a strut which is later disrupted. They conclude that the 
quadrupole formula is incorrect and that there are large structure-dependent cor- 
rections to it. In the case of the binary pulsar PSR 1913 + 16 (Taylor et al 1979) such 
corrections amount to factors of several orders of magnitude and these are completely 
ruled out by present data. 
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Thus the status of what we term ‘classical derivations’ of the quadrupole formula is 
very confusing and it is perhaps safe to say that many of the approximations found in the 
literature are under shadows of doubt. 

Motivated by these considerations we decided to take a fresh look at the problem of 
gravitational radiation. In order to avoid the various pitfalls cited by Ehlers er a1 (1976) 
we decided to approach the problem from the quantum gravity point of view. Normally 
one would not resort to quantum methods to calculate the energy loss from macroscopic 
systems, even though there is nothing wrong in principle in doing so. But in the case of 
gravitational radiation the classical calculations, as argued before, have been put under 
a shadow. We are not implying, of course, that purely classical remedies to these 
difficulties do not exist. (After our work was completed, a number of papers have 
appeared which have sought classical remedies to the issues raised in our paper, e.g. 
Papapetrou and Linet (1980), Breuer and Eckart (1981), Anderson (1980) and 
Walker and Will (1980).) 

It is our feeling, and we hope to justify this in our article, that many of these 
difficulties can be handled in a more lucid and tractable fashion in the quantum 
approach even though a one-to-one correspondence with the difficulties of the classical 
calculations is hard to establish. Of course, one may right at the onset question the 
wisdom of using quantum gravity methods when a fully consistent quantum theory of 
gravitation is yet to be developed. Our answer to this is that we are ultimately interested 
only in the classical limit of our calculations and it is well known that classical results are 
fully reproduced in any field theory by the so-called tree diagrams and for these, 
consistent rules of calculation, namely Feynman graph perturbation expansions, do 
exist for quantum gravity. 

We pause at this stage to enumerate a few of the obvious advantages of the 
diagrammatic approach of quantum gravity over its classical counterpart. First of all, 
the particle equations of motion are automatically taken care of in terms of energy- 
momentum conservation laws at each vertex; the anclogue of general coordinate 
invariance of general relativity translates to gauge invariance in quantum gravity and 
the latter is computationally easier to realise than the former; in the tree graph 
approximation no renormalisation is necessary and thus one can even treat point 
particles without any need for renormalisation in contrast to the classical calculations 
where point particles represent singular sources and their treatment requires careful 
renormalisation procedures; no need for the introduction of the pseudo-tensor, etc. 

However, just as in the case of electrodynamics the long-range nature of gravita- 
tional interactions introduce certain difficulties in a consistent evaluation of the 
S-matrix elements. These difficulties are overcome by replacing the usual plane-wave 
in and out states by the appropriate Coulomb-like modified states. We have assumed 
that the dominant non-perturbative modifications at large distances are caused by the 
l / r  potential. Even in the classical general relativistic treatments this difficulty persists 
in the following sense: even at very large distances from gravitating objects the paths of 
light rays deviate from their flat paths logarithmically. The justification, in the quantum 
approach, for modifying the in (out) states only due to the l / r  potential is again to be 
found in the equations of propagation of gravitational perturbances in a Schwarzchild 
background of general relativity (C V Visveshwara, private communication), where the 
non-perturbative aspect (occurrence of In r terms) is seen to be entirely due to the l / r  
potential. At this stage a criticism often voiced against Feynman graph calculations on 
the grounds that the parameter Gmlmz could in general be very large and perturbation 
theory should break down badly (Thorn6 er a1 1975) should be pointed out. It is shown 
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in this paper that no such thing happens, at least for the classical limit. The reason for 
this is that no S-matrix element in the tree graph approximation depends on the 
parameter Gmlm2 itself; rather, the dependence is on parameters like Gmq where q is 
the momentum transfer and this translates to the familiar small parameter of general 
relativity, i.e. GM/Rc2 in space-time language. It is a remarkable feature that even 
though the modified in (out) states explicitly involve the large parameter Gmlm2 (hence 
the need for non-perturbative treatment of these states) none of the observables 
(S-matrix elements) have this explicit dependence on Gmlmz. 

We emphasise here that Born approximation amplitudes for graviton emission have 
been calculated by a number of authors before (Barker er ai 1969, Barker and Gupta 
1974, Gupta and Redford 1979). But they computed quantities like the differential 
cross section (which is now a function of several variables as opposed to the scattering 
situation where it depends on only one momentum transfer variable), or the frequency 
spectrum, or the total energy loss (at all impact parameters), etc. The energy loss has 
also been computed using frequency cut-off, etc. In some cases the above calculations 
have also been performed in approximations that go beyond the Born approximation. 
But in all these calculations the precise form of the classical quadrupole formula 
inclusive of its numerical features is very hard to recognise. 

As argued before, the correct S-matrix elements are those that have been calculated 
on the basis of the distorted in (out) states and these amplitudes are extremely hard to 
evaluate explicitly. It is at this stage that we introduce an innovative method to extract 
the classical limit that is the main feature of this paper. Our approach is to identify 
directly the one-graviton transition operator from the structure of the S-matrix 
elements. This we do for Iwm separate physical situations, namely two particles of 
unequal mass scattering (i) gravitationally and (ii) electromagnetically. The relevant 
graviton transition operator is defined as 

Sfi = +? Og+i (1.7) 

where Sfi is the S-matrix amplitude for the emission of a graviton in scattering from 
state +hi to state t,bf. Clearly 0, is not a functional of 4. In order to show the relationship 
between Sfi and the classical quadrupole formula, we first make a non-relativistic 
reduction of the matrix elements as after all the quadrupole formula is expected to make 
sense only when the particle motions are non-relativistic. After the non-relativistic 
reduction, the quantum-mechanical complementarity between space-time and energy 
momentum descriptions is invoked to find the space-time form of 0,. It will be seen that 
U, is exactly the third time derivative of the quadrupole moment for the material 
distribution. This way one need not calculate such complicated quantities as total cross 
sections, frequency distribution, etc, to arrive at the classical limit. 

We extract the one-graviton transition operator for the situation where the unequal- 
mass particles scatter gravitationally both in the Born approximation as well as in the 
distorted-wave approximation. We show that one recovers the same transition opera- 
tor (as one should, since 0, is not a functional of the scattering states). Next we repeat 
the calculations for the electromagnetic scattering case and recover the same operator, 
thus implying the universal applicability of the quadrupole formula for gravitational 
radiation emission when the accelerating mechanisms are gravitational and otherwise. 
On the basis of the remark that 0, is not a functional of 4 we argue that a consistent way 
of calculating the emission of gravitational radiation from bound systems is to use the 
U, in (1.7) derived from scattering studies but replace t,bf, $i by the appropriate 
bound-state wavefunctions. For the classical calculations this means that one takes the 
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space-time form of 0, derived from scattering studies and depending on whether one 
wishes to derive the energy loss during scattering or from a classically bound system one 
evaluates 0, for the particular classical trajectories desired. This is indeed the standard 
interpretation of the quadrupole formula. 

So our calculational strategy is as follows: in 0 2 we set up Feynman rules for the 
interaction of gravitational fields with neutral as well as electrically charged matter 
fields. 

In 0 3 we use the results of Q 2 to calculate the amplitudes for one-graviton emission 
both for the gravitational scattering case as well as the electromagnetic scattering case. 
In the scattering calculations the problem of the absence of incoming radiation is 
handled trivially. The non-relativistic limit of these amplitudes is then taken. 

In 0 4 we discuss the problem of the modification of the asymptotic in (out) states 
owing to the long-range nature of gravitation. A new scheme for generating S-matrix 
elements around these modified states is presented. Conceptual difficulties and some 
ideas on how to improve these schemes in the future are discussed. Again the amplitude 
is calculated in the non-relativistic limit. 

In 0 5 we argue the way to obtain the one-graviton transition operator and then 
show how to recover the classical energy-loss formulae from it. 

In § 6 we present our discussions and conclusions. 

2. Feynman rules 

Most of the contents of this section except for the result on the graviton propagator in 
arbitrary gauge may be found in many places in the existing literature (Duff 1975). First 
we discuss the coupling of neutral scalar matter fields to gravitational fields. The 
Lagrangian density describing neutral scalar matter fields is given by 

P M  = - t ( 4 , , ~ ~ ” 4 , ,  +m24’ )  (2.1) 
where c$,& = and vp” is the Minkowski metric. The simplest Lagrangian density 
describing the interaction of the gravitational field with the scalar field is obtained by 
replacing q”” in PM by gpV, all derivatives by covariant derivatives with respect to gpu 
and multiplying by d q  

sM=-- %d4,p4,ugpv + m 2 4 2 ) .  (2.2) 
The Lagrangian for the gravitational field is dictated by the action for general 

relativity, namely 

G R .  1 
9*=- 

16rG (2.3) 

From the computational point of view it turns out to be useful to work in the 
Goldberg form with the redefinition c g g p V  = g’””(g’ = g) ;  then (2.3) takes the par- 
ticularly simple form 

with 

K~ = 167rG. 
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The matter Lagrangian takes the form 

~ M = - 4 ( 4 6 , , 4 6 , , g , , + ~ m ~ ~ ~ ) .  (2.5) 

Likewise the Lagrangian describing a charged scalar field and the electromagnetic 
field interacting with the gravitational field is 

2.1. Perturbation theory 

The gravitational field L,“ is identified as 

g ( ” ” = ~ C L Y + 2 ~ h ~ Y .  (2.7) g”” = 7711” + 2 K p ”  

With this definition one obtains the conventional normalisation of one particle per unit 
volume. From (2.7) we get 

(2.8) 

The functional derivative of YM in (2.2) with respect to h”” yields the source 0,” of 

1 LI f i w  LWu= h””-Fh,v + O ( h z ) .  

the field h ILy 

e,, =4,&,” f v F L Y 9 M + O ( h )  (2.9) 

which satisfies 

awe,, = o ( h ) .  

The Lagrangian SM can be rewritten as 

(2.10) 

2M = 2~ + Kh . (2.1 1) 

hw”+ h’”+a*,f”+a”[w (2.12) 

By virtue of (2.10), any modification of hFY of the type 

leaves the action ISM d4x invariant. The bilinear terms in h’l” of 9g are likewise 
invariant under (2.12). Invariance under (2.12) is the statement of the gravitational 
gauge invariance. For the source of the Goldberg field we obtain 

(2.13) 

When we do not drop the O ( h )  terms in e,,,, it is no longer conserved. But then 8,” is 
not the entire source of h,” as the cubic terms in Sg generate additional source terms. 
These terms yield a f , , (h)  which together with elLY (inclusive of O ( h )  terms in it) is 
conserved by virtue of the field equations. 

Now far away from the sources 

h”” + hr2 

and it is a very legitimate approximation to ignore terms O(h:ad) and the source of h Z  
is 6:: which is conserved; this means, as argued before, that hrad has an arbitrariness in 
it which can be expressed as 

(2.14) h:A -, hrA +afi[” + a y p .  
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In momentum-space language, this means that the polarisation tensor E””(k) of the 
emitted graviton is arbitrary up to terms of the type k ” ( ” ( k ) + k ” ( ” ( k )  for arbitrary 
4%). 

The S-matrix element is of the form 

S= E ” ” (  k ) M W y  (2.15) 

and under the change E””(k)+ E””(k)+ k ” e ” ( k ) + k ” e ” ( k )  S should remain 
unchanged. This means 

(2.16) SS = ~ ” k ” M , ,  + (”k  ”MIL,, = 0 for all (. 
In other words 

k”MFY = 0. (2.17) 

This is the statement of gravitational gauge invariance for the S-matrix elements. 

k”&, = $kJ?z. (2.18) 
The arbitrariness in the choice of ~ ” ” ( k )  allows one to impose on E””(k) the 

k,E”” = 0 E :  = O  E ;  =O. (2.19) 

The first of these is dictated by the wave equation satisfied by h””; the remaining 
conditions can be imposed by a proper choice of ( ( k ) .  There are eight independent 
conditions implied by (2.19). This means that of the ten components of the polarisation 
tensor E””  only two are physically independent degrees of freedom and these are the 
two transverse degrees of freedom of gravitational radiation. 

By extracting the quadratic terms in h”” in 2Zg, we find the equation satisfied by the 
free field is 

(2.20) 

When calculations are performed in the Goldberg form (2.21) becomes 

conditions 

-a2h,, +a,aAhA, +a,aAhAw -a,a,h: = 0. 

Just as in electrodynamics it is not possible to invert this to yield the Green functions. 
To this purpose we add a gauge fixing term to 2Zg: 

(2.21) 

The propagator is then calculated to be 

The normalisation factor $ should be noted. Clearly A = 1 produces a very simple 
form of the propagator. This is equivalent to the Lorentz gauge in electrodynamics and 
corresponds to the De Donder choice of coordinates in general relativity. In a similar 
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fashion the photon propagator in arbitrary gauge is 

i 
D+,, = p( qCIY+(a - (2.23) 

2.2. The vertices 

Now we collect the various vertices that are required for our calculations. First we give 
the results coming from the Lagrangians (2 .4)  and (2.5) using (2.7): these vertices are 
displayed in figure 1. 

l ( a )  r d p ' ,  P )  = -iK(p,pL +pup:  + rlpYm2) ( 2 . 2 4 ~ )  

(2.243) 1(b)  2 2  r , L y , a p ( p f ,  P :  ki, k2) = - i ~  m (rlapv,v - vafivpV - ~ ~ ~ 7 7 ~ ~ ) .  

((11 I bl i C )  

Figure 1. 

The three-graviton vertex is really very complicated. We denote it as 

U C )  ra1~1.a2~2.a3p3(ki9 kz, k3) with k l  + k2+ k3 = 0. 

We introduce the symbolic notation (a@) = a, etc. In this notation we can write the 
three-graviton vertex as 

1 a 4 4 ;PUk3k2 + ,,a,a2a3;PUk2k3 +7742LZ3al;PLTk3k1 + ,,4241a,;PUklk3 ra,aza3=-$iK(77 * P V  P U  P O  P U  

+ ,,4,42ai;PUk2k1 P O  + ,,43a,az;PUklk2) P O  ( 2 . 2 4 ~ )  
where 

77 abc;Pu = - 77aBr lLY,AK;w 

= 4 ( 7 7 C L " 7 7 5 K 7 7 h P 7 7 Y ~ ) + 2 7 7 a P 7 7 p ~ 7 7 1 . ' ~ 7 7 Y ~  -4,,@fi,,PU,,VK,,Aa 

-77pa77u'p77 *"VAK + 277pu77 AKT pa77 O". 

The Bose symmetry of the three-graviton vertex is very transparent as written in 
( 2 . 2 4 ~ ) .  

Now we give the vertices that are generated by the Lagrangian (2.6).  These are 
shown in figure 2. The broken lines are photons and the wavy lines are gravitons. The 
vertex 2 ( a )  is the same as l(a) and we have 

2(b)  r p b ,  P ' )  = ie(p +P'L (2.25 b )  

W )  ( 2 . 2 5 ~ )  

2 ( d )  

r,,&, P ' ;  k, 4 )  = k E ( P  + p f ) p q r . u  + ( P  

rrv .a ,B(k ,  q94')=i~[(4:4v + q L 1 ~ ) 7 7 ~ p  + 4  * q ' ( ~ ~ p ~ Y a  + T ~ = T ~ P )  

- - ( 4 h 4 U r l , B +  4b4,7?uB +4;4f377"a + 4 I q a 7 7 P P ) I .  (2.25d) 

With these Feynman rules we are ready to proceed with our calculations. 
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3. Born approximation amplitudes 

3.1. The case of gravitational scattering 

The diagrams that contribute to the one-graviton emission amplitude are shown in 
figure 3. We classify these diagrams as follows: diagrams ( a ) - ( d )  only involve vertices 
l (a) ;  for this reason we shall call this set 'one-graviton graphs'. Likewise, ( e )  and ( f )  
are called 'two-graviton graphs' and (8 )  is called the 'three-graviton graph'. 

le) 

Figure 3. 

Even though the amplitudes are easily written down, they are algebraically very 
tedious. Hence we shall only state various properties of these amplitudes without 
writing them down explicitly. The amplitudes are independent of A and a, signifying 
their gravitational and electromagnetic gauge invariance as far as the non-radiative 
fields are concerned. Further, (2.18) has been verified to hold for all the amplitudes, 
signifying gauge invariance of the radiated field. These calculations also serve to check 
the correctness of various manipulations. 

3.1.1. Non-relativistic reduction. We specialise to the centre-of-mass frame of the 
incoming particles m l ,  mz; we define 

p1= (El, $PI pz = (Ez, -4~). (3.1) 

p ;  = ( E ; ,  i p ' )  and p i  = ( E ; ,  -$p').  (3.2) 

Likewise we denote 
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If we call r l ,  r2 the position vectors of particles 1 and 2,  we have 

M R  = mlrl + m2r2 r = rl - r2 (3 .3 )  

here R, r are the centre-of-mass ordinates and relative separation; M is the total mass 
of the system 

m l r l + m 2 r 2 = M R = p ;  + p ;  = - k  

and since p i  + p i  + k = 0, therefore 

mlrl  - m2i2 = ( m l  - m2)R +2pr ;  

hence 

k where p' = 2 p r  (3.6) 
I I  M I - m 2  

p1 - p 2  = P I - - - -  M 

and 

Thus the total final energy is 

p" k 2  
8p 8M 

E f = m l + m 2 + k  +-+-. 

The initial energy is 

Ei = ml f m2 + p 2 / 8 p  

since ko<<M7 k " - ( p 2 - p t 2 ) / 8 p  and 

(3.7) 

(3 .8 )  

(3.9) 

In consequence we can write 

(3 .10)  1 ,  p ;  =kp' p ;  = - 2 p .  

Hence the final four-momenta are 

(3 .11)  

(3.12) 

Now we are ready to work out the non-relativistic limit of the amplitude to emit a 
graviton. 

Because of the gauge conditions (2.19) we can neglect all terms proportional to q w y  
in the amplitude. We skip the arithmetical details and only indicate the final results: 
(the three-graviton graph contribution) 

3 4i4i 2 2 M;: Z4iK - (q2)2"2 (3.13) 

where 

4 = 4 ( P - P ' ) .  (3.14) 
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1 3  4 Thus M 3  is of order Z K  m ; by straightforward evaluation we find (two-graviton 

M;. -O(K3m2q2). (3.15) 

Thus the two-graviton graph contributions are q2/m2 reduced relative to M 3  and 
hence can be neglected. The structure of the one-graviton terms is more complicated 
and, after a little algebra, we find 

graphs) 

Thus the total amplitude in the non-relativistic limit is 

(3.16) 

(3.17) 

where p = mlm2/M and M = ml+ m2. 

3.2. The case of electromagnetic scattering 

The diagrams that contribute to the amplitude for emission of gravitons during 
electromagnetic scattering are shown in figure 4. The kinematic structure of invariants 
is exactly as for gravitational scattering. The diagrams in figure 4 are evaluated using 
the vertices (2.24a), (2.25b), (2.2%) and (2.25d). The photon propagator as given in 
(2.23) is needed also. 

J 

I Q )  (bl  ( C i  

The calcuIations proceed exactly as for gravitational scattering. The significant 
results are that the amplitude is independent of the photon gauge fixing parameter and 
the total amplitude satisfies the gravitational gauge invariance condition (2.18). The 
non-relativistic reduction is done exactly as for gravitational scattering and since this is 
the only result we are interested in we shall quote only the final result of our 
non-relativistic analysis: 

(3.18) 
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We recognise that the amplitudes (3.17) and (3.18) are simply proportional to each 
other. Incidentally, the charges in (3.18) are measured in rationalised units. 

4. The modified Born approximation 

As mentioned in the introduction, the long-range nature of the gravitational inter- 
actions makes the Born approximation based on incoming and outgoing plane-wave 
states somewhat unreliable. This problem exists in electrodynamics also. In the case of 
electrodynamics a fully relativistic treatment of the necessary modifications can be 
carried out. In the gravitational case, however, such a fully relativistic treatment is very 
difficult. But for the problem of our interest where only non-relativistic motions are 
involved the situation is tractable. 

In the Born approximation scheme employed in 0 3, the initial and final states are 
plane-wave states; in particular the initial state is a two-particle state where each 
particle is taken to be in a plane-wave state. The state of the two-particle system is then 
described by the product wavefunction 

x(r1, tl; r2, t2) = $l(rl, t1)+2(r2, t2) 

= exp(iElt1- ipl rl) exp(iE2t2 - ip2 r2) (4.1) 

in the ‘many-time’ formalism. When the motion of the particles is non-relativistic one 
only needs (4.1) for t l  - t2 and thus a ‘single-time’ formalism for the composite system 
may be used. In such a case 

X(r1, r2, t )  = exp[i(El +E2)f] exp(-ipl rl -ip2 * r2). 

Introducing the notations of equations (3.3)-(3.6) we find 

(4.2) 

E1 + E2 = P2/2M +p2/8w 

and 

PI * r l+p2 r2 = P R+$p  * r. 14.3) 

Hence 

Thus the centre-of -mass and relative coordinate motions decouple. When there are 
long-range forces present the composite wavefunction X(rl, r2, t )  can no longer be 
factored into the single-particle functions exp(iElt - ip, rl), etc. This is because even 
at very large distances some effect of the long-range potential persists. However, the 
separation into the centre-of-mass and relative coordinates still holds. But now instead 
of the simple exp(-ip r) factor one has a much more complicated dependence on 
p and r. 

Now we make the simplifying assumption that all the long-range modifications are 
entirely produced by the l / r  part of the potential. This assumption is justified by the 
fact that in describing the propagation of perturbations in a Schwarzchild background, 
the asymptotic form of the wavefunction is precisely that of a Coulomb distorted plane 
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wave. In such a situation the composite wavefunction takes the form 

x(r1, r2, t )  = N exp[i(P2/2M+p2/8p)f] 

x exp(-iP * R) exp(-$ip * r)F(iv, I, $ipr -iip r ) ,  (4.5) 

In (4.5) F is the confluent hypergeometric function and N is a normalisation factor. 
For the gravitational problem Y = Gmlm2,u/p (R = c = 1) and in general Y can be very 
large, thus invalidating a perturbative expansion in G ;  we claim here that all the 
non-perturbative aspects of the S-matrix elements are contained in (4.5). It is clear that 
equation (4.5) cannot be separated into factors depending on rl and r2 separately. We 
can, however, expand the r dependence of equation (4.5) in the plane-wave basis 
exp(iq * r ) ,  i.e. 

Thus we can interpret the long-range modified composite wavefunction, equation 
(4.9, as a wavepacket built out of the plane-wave states suitable for the Born 
approximation. Now we can write a product decomposition for 

exp(-iP R) exp(-iq . r )  = exp(-iql rl) exp(-iq2 r2) (4.7) 
where 

mz ml 
4 1 = - P + q  M 4 2  = -P M -4. 

The t integrations at various vertices give the energy conservation S function while 
R integrations give the momentum conservation S functions; clearly there is no 
conservation of the relative momenta p ,  etc. 

Now the modified S-matrix elements are obtained from the Lagrangians of (2.4), 
(2.5) and (2.6) by expanding the field variables not in a plane-wave basis but in the basis 
provided by (4.5). Clearly a single field has no consistent expansion; only product fields 
41(x)42(y)  can be expanded in the basis provided by (4.5). One may anticipate some 
problems coming from the derivative terms. It turns out that as long as only spatial 
derivatives are involved, a consistent scheme can be derived for obtaining the S-matrix 
elements in terms of the basis of (4.5). Both in electromagnetic and gravitational 
radiation problems, the freedom in the choice of gauge ensures that it is possible to keep 
only spatial derivatives in the action integrals. The whole procedure boils down to using 
(4.6) and treating the problem as if it were a Born approximation performed with the 
plane-wave states ( E l ,  41) and (E2, q2); a minor subtlety arises due to the fact that only 
E: - p :  = mi and not E: -4: but the Fourier transform +(iv, p, q )  of the confluent 
hypergeometric function is of the form 

which indicates that the important values of q are such that they lie very close to p and 
thus the errors introduced by treating the particles as if they were on the mass shell are 
negligibly small. The rest of the analysis proceeds more or less as in 0 3 and the final 
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result in the non-relativistic limit is 

Mi, = 4 k 3 m l m 2  dq dq’ + * ( - i d ,  p ’ ,  q’)++(iv, p ,  q)  I 
where 4‘ = 4 - 4 ’ ;  the Fourier transforms carry the subscript f to indicate that the 
Coulomb modifications of the initial- and final-state plane waves are different. The 
initial state is that modification whose asymptotic form consists of a plane wave and an 
ourgoing spherical wave; likewise the final state is such that its asymptotic form is a 
plane wave and an ingodng spherical wave. 

When U and v’ are small, we can use 

+AV, P, q )  - s 3 ( p  - 4 )  (4.10) 
“ -0  

and verify that (4.9) reduces to the Born approximation results. 
The double-pole term in (4.9) comes from ‘three-graviton’ graphs and the single- 

pole term comes from one-graviton graphs. In general a precise evaluation of Mij in 
(4.9) is very hard to perform. But we shall show in the next section that this explicit 
evaluation is really not warranted to arrive at the classical limit. 

In deriving (4.9) we treated the graviton wavefunction as a plane wave. Strictly 
speaking this is not correct as the graviton also carries ‘gravitational charge’ and its 
wavefunction should be modified by appropriate long-range effects; we again assume 
that the l / r  part of the gravitational interaction is entirely responsible for this 
long-range influence. The justification for this is again derived on the basis of the 
equations for tensor perturbations around a Schwarzchild metric (Visveshwara, private 
communication) ; these equations indicate that the asymptotic modifications are the 
same irrespective of whether the perturbations are scalar, vector or tensorial. The 
graviton wavefunction therefore becomes 

h,, = exp(iot-ik r)F-(-2ia, 1, ikr+ik r )  (4.11) 

where a = GMw/c3.  

for non-relativistic particles. The asymptotic behaviour of equation (4.1 1) is 

h,, - &,”(k) exp[iwt -ik r +(2iGMw/c3) In r]. 

The factor 2 is associated with a because relativistic particles ‘fall’ at twice the rate 

(4.12) 

Thus we see that on using (4.11) instead of the plane wavefunctions for the 
gravitons, we have completely accounted for the fact that the ‘true light cones’ deviate 
logarithmically from the ‘flat space light cones’ at large distances. This is one of the 
criticisms of Ehlers et a1 of the existing methods of approximation. It is to be noted that 
by defining a new time variable 

(4.13) t* = t + (2GM/c3) In r 

the wavefunction of (4.11) can be made to look like a plane-wave solution: 

h,, - &,,(IC) exp(iwt* -ik r ) .  (4.14) 

The variable t* is precisely the one that has been introduced by Anderson (1980) to 
alleviate the problem that asymptotically the true light cones differ logarithmically from 
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the flat space ones. Now we come to the question: what then is the influence of (4.1 1 )  on 
the result (4.9)? 

A not so rigorous resolution is as follows. for weakly bound systems, w is expected to 
be of the order J G M / R ~  where R is the typical size of the bound system. This means 
that G M w / R 3 - ( G M / R ~ 2 ) 3 ’ 2 ,  which is very small for weakly bound systems. The 
consequence of the smallness of a in (4.11) is that one may safely use the plane-wave 
states in place of (4 .11)  and the result (4.9) will be reliable. 

Actually, a more rigorous argument is available. Just as we Fourier decomposed the 
matter wavefunctions as in (4 .6) ,  we can likewise Fourier decompose the graviton 
wavefunction (4.1 1 ) ;  then equation (4 .9)  is modified as follows: 

A& = 4 i ~ ~ m ~ m ~  dq dq’ dk’ 4: (-id, p’, q’)4! (-2ia, k, k’)4+(iv, p, q )  J 
(4 .15)  

For the non-relativistic system considered here, the crucial point is that the terms 
within the brackets are independentof k’! This means that the dk’ integration in (4.15) 
may trivially be carried out on noting 

J dk‘ (-2ia, k, k’ )  = 1 for all a. (4 .16)  

Thus (4 .15)  reduces exactly to (4 .9)  even though we have now made a rigorous 
inclusion of the deviation of the true light cones from the flat space ones. We again 
emphasise that this miraculous simplification disappears the moment we consider 
relativistic particle motions; but no one expects the quadrupole formula to be valid in 
those circumstances. 

5. The one-graviton transition operator 

We first demonstrate how to obtain the one-graviton transition operator from our Born 
approximation amplitudes and then repeat the calculation for the amplitudes obtained 
in 0 4 .  For the Born amplitudes, we combine the results of (3.17) and (3.18) and arrive 
at the amplitude to emit a graviton during the scattering of two particles of masses and 
charges ( m l ,  e l )  and (m2,  e2 )  respectively: 

q = t ( P  - p ’ )  w = ( p 2 - p f 2 ) / 8 p .  

It is interesting to note that when 2e1e2 = K2mlm2, the amplitude to emit radiation 

Using tp ’  = i p  + q we rewrite the expression within the brackets of (5.1) as follows: 
(gravitational) vanishes in the approximation considered here. 

The initial-state wavefunction is of the form (see equation (4 .4 ) )  

4i = exp[i(P2/2M + p 2 / 8 p ) t ]  exp(-iP R) exp(-$p - r ) .  (5 .3)  
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Since the centre-of-mass variables only reproduce the overall momentum conser- 
vation S functions we shall ignore them and write 

G~ = exp(ip2t/8p - 3 p  * r ) .  

+f = exp(ip”t/8p) exp(-$p’ r ) .  (5.5) 

(5 .4 )  
Likewise the final-state wavefunction is 

Now it is known very well that l / q 2  is the Fourier transform of the Coulomb 
potential, i.e. 

Similarly we have 

dr exp(-iq r ) - ( + - $ )  1 r.r. 8.. 
4i4’- (q2)2 - J 8 r  r 

and finally 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Comparing (5.9) and (5 .8 ) ,  we see that the qi4j/q2 term in (5 .2)  can be neglected in 
the classical limit. Finally, we recognize that the space-time equivalent of w is the ia/at 
operator; combining all these results we find 

where 

(5.10) 

(5.11) 

We have used $p = p dr/dt = pu in deriving (5.11) (see equation (3.6)). 
The structure Xii as it stands in (5.11) is not very transparent. But on using the 

equations of motion 

one recognises that Mii is precisely equal to 

(5.12) 

(5.13) 

The proof of this statement is as follows: 

p(riri)“’ = p(r iu j  + virj)” 

= p (2uiuj + ritji + iiui)’ 

= 2(puiui i- 2triri/r3)’ 



The Einstein quadrupole formula 

using (5.12) and abbreviating A(4ele2 - 2 ~ ' m l m ~ )  by 6. Therefore 

p(riri)"' = 2(puiuj + triri/r2)' 

489 

d riri virj + uiri 
= 2 6 ( z 7 + 7 ) .  (5.14) 

Including the polarisation tensor the amplitude to emit the graviton is 

D~~ = p (rirj - fsi ir2).  (5.15) 

D' has been replaced by the traceless form D in (5.15) because of the fact that E i = 0 
(see (2.19)). Dij in equation (5.15) is the quadrupole moment tensor for the material 
system in the centre-of-mass frame. 

It should be appreciated that the equations of motion (5.12) have not been 
introduced arbitrarily. The amplitude for the radiationless process is uniquely deter- 
mined to the approximation considered and this yields (5.12) automatically. 

Now we derive the analogue of (5.15) for the modified Born approximation case; 
here it should be remembered that the structure of the Fourier transforms $&, $p, 4) 
selects 4 arbitrarily close to fp. Now we go back to (4.9) and recast it in the space-time 
form in exactly the same way we have done for the Born amplitude. We first recall that 4' 
in equation (4.9) is given by 

4 = 4 - 4 ' .  

Then using equations (5.6) to (5.9) we recast the amplitude of equation (4.9) into 

M..= -- 4m1m2 I dt exp(-iwt) exp(-ip2t/8p + ipf2t /8p)  
w 

J 

- - - * I dr  dt exp(-iwt)$;* $KD& 
w 

(5.16) 

where $f, i,hi are now the Coulomb distorted solutions (4.5) with appropriate boundary 
conditions; thus we see that the structure of the one-graviton transition operator is 
unchanged and is essentially $K& 

Our next problem is to relate the matrix elements given by (5.16) and (5.15) to the 
classical energy-loss formulae; first we do this by comparing results (5.13) and (5.16) 
with their electrodynamic analogues. In electrodynamics, under identical approxima- 
tions as made in this paper, the amplitude to emit a photon can be calculated to be 

where d is the electric dipole moment of the system and E the polarisation vector in the 
gauge (E' = 0). The one-photon transition operator in electrodynamics is E * d. Since 
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the number of degrees of freedom and the kinematical details are identical for the 
electromagnetic and gravitational cases, we conclude that the one-graviton transition 
operator must be +K& ' j .  The classical energy-loss formula in electrodynamics is 

dE' ( E  * &)2 -= _- 
dt 1 6 r 2  (5.18) 

Hence we conclude that the energy-loss formula for the case of gravitational 
radiation should be 

(5.19) 

This is precisely the formula obtained by Einstein in 1918! 
For the reader who is not happy with the arguments given above leading to (5.19), 

we give here a more elaborate reasoning using arguments similar to the ones found in, 
say, Landau and Lifshitz. We arrive at the probability for quadrupole gravitational 
radiation to be (the 4mlm2 factor in the amplitude is removed by the appropriate 
normalisation factors in the phase-space integrals) 

The intensity of radiation is likewise 

Now the classical limit is obtained by resorting to the correspondence principle (see 
Landau and Lifshitz, vol 4, part 1, p 136) which states that the matrix elements 
( $ K & & ) ~ ,  are now to be replaced by the value of $ K E ~ P ~ ~  evaluated for the relevant 
classical trajectory. Thus 

which is the same result as we had before. 

6. Discussions and conclusions 

We conclude this paper with a short discussion of its salient features. Inspired by the 
various criticisms of the existing classical calculations of the energy-loss formula due to 
gravitational radiation, we have undertaken the study of this problem from the unusual 
point of view of quantum gravity. Though it may seem unnatural to use quantum 
methods to study this purely classical situation, we emphasise again that this was done 
solely due to the cloud of controversies surrounding the classical calculations. We also 
wish to emphasise the fact that, in principle, there is nothing wrong in approaching even 
purely classical problems from a quantum point of view as presumably the underlying 
structure of all classical laws is quantum mechanical. Also, it often happens that 
quantum derivations are simpler than their classical counterparts, though this is not 
always true. 

We have calculated the one-graviton transition operator by studying the amplitude 
to emit a graviton during the scattering of two masses m l  and m2. We have studied the 
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problem when the masses are scattered both gravitationally and electromagnetically. 
We find that the two amplitudes are proportional to each other in the non-relativistic 
limit, By studying the scattering problem, the criterion of ‘no incoming radiation’ 
demanded by Ehlers et a1 is naturally satisfied. The emission amplitudes have been 
calculated in the usual Born approximation as well as in a more exact treatment where 
the in and out states have been taken to be the confluent hypergeometric functions in 
place of the plane waves used for the Born approximation. This latter treatment 
alleviates the criticism levelled against Feynman graph calculations, namely that there 
exists a potentially large parameter G m l m 2 /  hc in the theory and hence no perturbation 
theory in the coupling constant should be possible. We find once again that the 
structure of the one-graviton transition operator is unchanged. By using the confluent 
hypergeometric wavefunction for the graviton also, the problem of the true light cone 
versus the flat space light cones has been adequately tackled and we find that because of 
the non-relativistic nature of the system, no error is caused in using the flat space 
propagators for the gravitons. The self-interaction of the gravitational field was found 
to be crucial in obtaining the quadrupole formula: thus the field contribution to the 
quadrupole formula despite its non-localised nature has been adequately taken into 
account in our treatment. Our results imply that even though the field contribution is 
non-localised, the effective size of the system is still governed by the relative separation 
of the material bodies, which is small compared with the wavelength of the radiation. In 
the quantum treatment this fact emerges as a strict consequence of the non-relativistic 
motion of the sources. Thus we feel that we have alleviated the majority of the 
criticisms cited by Ehlers et a1 and still find the Einstein result for the energy-loss 
formula due to quadrupole gravitational radiation to be correct. This is in direct 
contradiction to Rosenblum’s claim. We thus maintain that the quadrupole formula 
should be applicable to the binary pulsar PSR 1913 + 16. The experimental results 
from this system also support this view. 

Some of the obvious advantages of the quantum approach are (i) there is no need for 
any renormalisation even if point particles are used. This should be contrasted with the 
classical calculations where careful renormalisations have to be carried out to remove 
self-energy ambiguities. (ii) No pseudo-tensor is required as the only relation required 
to deduce the energy-loss formula is E = hw. 

As a last remark we mention that graviton emission amplitudes have been calculated 
in the Born approximation by a number of authors before. But these authors have 
calculated the total cross section and average energy loss in terms of the kinematic 
invariants of the situation. But it is very hard to isolate the classical energy-loss formula 
from these results, though admittedly they implicitly contain this in some form. What 
we have done here instead is to study the non-relativistic form of the emission 
amplitude and then deduce the quadrupole formula using the correspondence principle 
and the complementarity between space-time and energy-momentum descriptions. 
Also our use of the confluent hypergeometric wavefunctions is a significant improve- 
ment over the Born approximation. 
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